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Introduction

Circuit and field equations

In modelling of electromagnetic processes, one can distinguish two main classes of models:

Field models: Phenomena are described by partial differential equations in the whole space.
These models are heavy to solve. They concern significant size conductors in which one is
interested in field distribution (magnetic field, electric current, . . . )

Circuit models: Processes are described by ordinary differential, integral or algebraic
equations. Models are simpler to solve. They concern structures with complex connexions.

Our purpose: To derive, (and mathematically justify), using asymptotic approximation,
coupled models which use field equations in thick conductors and circuit equations in thin
ones.

Before treating Maxwell equations, we start here by considering Eddy current equations.

Eddy current processes consist in generating electric current and magnetic field in conductors
for the purpose of heating, stirring, metal shaping, welding, . . .
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Introduction

Circuit and field equations

Electromagnetic eddy current setups are composed of conductors (workpieces) and inductors.

Inductors are conductors that are connected to a power generator. The connection is
idealized by a cut.

Inductors may be thin wires or coils, whose thickness is smaller than other conductors.

These setups are generally modelled by Maxwell’s equations in which the wave propagation
term is neglected (assuming low frequency). These equations are valid in the conductors and
in the free space (vacuum or dielectric) domains.

When the inductor is “thin”, an intuitive modelling consists in using a model where thick
conductors are handled by a PDE, and coils (inductors) are handled by a (ODE or algebraic)
circuit equation and interface conditions that couple all equations.
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Maxwell vs Eddy Current equations

In time harmonic regime (U(x , t) = <(eiωtu(x))), we have the set of equations:

iωεe − curl h + j = 0,

iωµh + curl e = 0,

%j = e in the conductors

j = 0 in the vacuum

where:
h : Magnetic field, e : Electric field, j : Electric current

and
ω : Angular frequency,

ε : Electric permittivity,

µ : Magnetic permeability,

% : Electric resistivity.
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An example
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The eddy current model

Let us consider a simple configuration with one inductor.
The various involved domains are:

Ω = Ωε is the inductor (a toroidal domain with thickness ε� 1), with boundary Γε

S = Sε is a cut in the inductor (s.t. Ω̇ε := Ωε \ Sε is simply connected)

Ω′ε : R3 \ Ωε is the free space

Σε is a cut in the free space (s.t. Ω̇′ε := Ω′ε \ Σε is simply connected)
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The cuts ??

A well known result in vector analysis can be stated as follows:

Let k ∈ L2(R3) such that
curl k = 0 in Ωε.

Then, there exists ϕ ∈ H1(Ωε) and β ∈ C such that

k = ∇ϕ+ β∇pε in Ωε,

where pε is the unique solution of the problem:

∆pε = 0 in Ω̇ε,

∂pε

∂n
= 0 on Γε,

[pε]Sε = 1,
[∂pε
∂n

]
Sε

= 0

We deduce formally that we have

β =

∫
Sε

curl k · n ds =

∫
∂Sε

k · t d`.

We have a similar result in the free space Ω′ε.
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The equations

Main issue:
We consider eddy current equations with given voltage:

iωµhε + curl eε = vδε in Ωε,

%ε curl hε = eε in Ωε,

curl hε = 0 in Ω′ε

where δε is the distribution (supported by the cut Sε) given by

〈δε,w〉 :=

∫
Sε

curlw · n ds ∀w ∈ C∞0 (R3)3.

Problem: What is the limit when ε→ 0 ?

ETAMM Conference, 2018 R. Touzani 11/29



The equations

Main issue:
We consider eddy current equations with given voltage:

iωµhε + curl eε = vδε in Ωε,

%ε curl hε = eε in Ωε,

curl hε = 0 in Ω′ε

where δε is the distribution (supported by the cut Sε) given by

〈δε,w〉 :=

∫
Sε

curlw · n ds ∀w ∈ C∞0 (R3)3.

Problem: What is the limit when ε→ 0 ?

ETAMM Conference, 2018 R. Touzani 11/29



A variational formulation

Consider the space

Hε =
{
k ∈ L2(R3); curl k ∈ L2(R3), curl k = 0 in Ω′ε

}
The time-harmonic variational problem reads:

hε ∈Hε,

iω

∫
R3
µ hε · k dx +

∫
Ωε

%ε curl hε · curl k dx = v〈 curl k · n, 1 〉Sε ∀ k ∈Hε,

where 〈 · , · 〉Sε is the duality pairing between H
1
2 (Sε)′ and H

1
2 (Sε).

Note that jε = curl hε is the current density, eε = %εjε is the electric field in the conductor.
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A technical lemma

We assume in the following that:

0 < µ0 ≤ µ ≤ µM a.e. in R3,

µ = µ0 in Ω′ε,

%ε = ε2% % = Const. > 0.

Lemma

(Amrouche et al., Math. Meth. Appl. Sci, 1998)
We have

〈 curl k · n, 1 〉Sε =

∫
Ω̇ε

∇pε · curl k dx ,

where pε is the potential defined previously.
Consequently, the total current running in the inductor is given by

I ε := 〈 curl hε · n, 1 〉Sε =

∫
Ω̇ε

∇pε · curl hε dx .
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Interpretation of v

Setting k = hε in the variational formulation, we get

iω

∫
R3
µ|hε|2 dx +

∫
Ωε

%ε| curl hε|2 dx = v〈 curl hε · n, 1 〉Sε .

Let us define the electric current jε = curl hε and the electric field eε = %εjε. We deduce:

iω

∫
R3
µhε · hε dx +

∫
Ωε

jε · eε dx = v〈 jε · n, 1 〉Sε =: v I ε.

Magnetic Energy + Electric Energy = Voltage× Current
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How does Ωε depend on ε ?

We consider a closed Jordan curve γ of class C3, parameterized by a function g : (0, 1)→ R3

such that
g(0) = g(1), g ′(0) = g ′(1), |g ′(s)| ≥ α > 0.
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γ

Ωε

We define the mapping

F ε(s, ξ, θ) = g(s) + εrξ(cos θν(s) + sin θb(s))

for (s, ξ, θ) ∈ [0, 1)× (0, 1)× [0, 2π), where ν is the principal normal and b is the bi-normal of
the curve γ.
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The Jacobian of F ε is given by

Jε(s, ξ, θ) = ε2r2ξ(|g ′(s)| − εrξκ(s)) κ : Curvature

It is easy to see that if we have the property

r |κ(s)| ≤ α s ∈ [0, 1),

then F ε is a C1–diffeomorphism of Ω̂ onto Ωε that defines Ωε := F ε(Ω̂).
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A priori estimates

Lemma

We have the asymptotic behaviour∫
Ω̇ε

|∇pε|2 dx =
πr2

`
ε2 + O(ε3).

Theorem

There is a constant C > 0, independent of ε such that:

‖hε‖L2(R3) ≤ C ,

‖ curl hε‖L2(Ωε) ≤ Cε−1,

|I ε| ≤ C .

where we recall that

I ε := 〈curl hε · n, 1〉Sε =

∫
Ω̇ε

∇pε · curl h dx .
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The main result

Theorem (Arch. Rat. Mech. Anal., 2017, and submitted paper)

We have the asymptotic approximation:( iω

| ln ε|
Lε + R

)
I ε = v +O(| ln ε|−

1
2 )

where R is the conductor resistance and Lε is its inductance, i.e.

R =
%ε`

πε2r2
=

%`

πr2
, Lε = µ0

∫
Ω̇′
ε

|∇qε|2 dx ,

` is the length of γ and qε is a solution of the problem:

∆qε = 0 in Ω̇′ε,

∂qε

∂n
= 0 on Γε,

[qε]Σε = 1,
[∂qε
∂n

]
Σε

= 0

In addition, the limit current I := limε→0 I ε satisfies the Kirchhoff’s circuit equation:( iωµ0`

2π
+

%`

πr2

)
I = v .
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A remark

Remark

The problem: 

∆qε = 0 in Ω̇′ε,

∂qε

∂n
= 0 on Γε,

[qε]Σε = 1,
[∂qε
∂n

]
Σε

= 0,

qε(x) = O(|x |−1) |x | → ∞

has a unique solution.
We have proven in a previous work (M3AS, 2002), the asymptotic behaviour:

Lε = µ0

∫
Ω̇′
ε

|∇qε|2 dx =
µ0`

2π
| ln ε|+O(1).
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A sketch of the proof

Key idea: Choice of a convenient test function.
Let us take k = kε in the variational formulation:

iω

∫
R3
µ hε · kε dx + ε2

∫
Ωε

% curl hε · curl kε dx = v〈 curl kε · n, 1 〉Sε .

Since curl hε = 0 in Ω′ε, we have the expansion

hε = ∇ϕε + I ε∇qε in Ω̇′ε.

Therefore

iω

∫
Ωε

µ hε · kε dx

+

+ ε2
∫

Ωε

% curl hε · curl kε dx

=
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A sketch of the proof (Cont’d)

iω

∫
Ωε

µ hε · kε dx + iωµ0

∫
Ω′
ε

∇ϕε · kε dx + iω
(
µ0

∫
Ω̇′
ε

∇qε · kε dx
)
I ε

+ ε2
∫

Ωε

% curl hε · curl kε dx = v

∫
Ω̇ε

curl kε · ∇pε dx .

Hint.
• If we choose kε = α∇qε in Ω̇′ε, we have, since ∆qε = 0 in Ω̇′ε:

µ0

∫
Ω′
ε

∇ϕε · kε dx = αµ0

∫
Ω̇′
ε

∇ϕε · ∇qε dx = 0

µ0

∫
Ω̇′
ε

∇qε · kε dx = αµ0

∫
Ω̇′
ε

|∇qε|2 dx =: αLε

• If we take kε such that curl kε = ∇pε in Ω̇ε, we obtain:

%ε
∫

Ωε

curl hε · curl kε dx = %ε
∫

Ω̇ε

curl hε · ∇pε dx = %εI ε.
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A sketch of the proof (Cont’d)

Let us then choose

kε =


ε

| ln ε|
πr2

`
∇q̃ε in Ω̇′ε,

curl aε in Ωε,

where q̃ε is a regularization of qε (Note that ∇qε ∈ Lαloc(Ω′ε) for 1 ≤ α < 2), and

curl curl aε =
1

ε
∇pε in Ωε,

div aε = 0 in Ωε,

aε · n = 0 on Γε,

curl aε × n = kε|Ω′
ε
× n on Γε,

〈 aε · n, 1 〉Sε = 0.

ETAMM Conference, 2018 R. Touzani 23/29



A sketch of the proof (Cont’d)

Using this test function, we obtain

iω

∫
Ωε

µhε · curl aε dx +
ε

| ln ε|
iωµ0πr2

`

∫
Ω̇′
ε

hε · ∇q̃ε dx + εI ε =
v

ε

∫
Ω̇ε

|∇pε|2 dx

Using the expansion hε = ∇ϕε + I ε∇qε in Ω̇′ε, we obtain( iω

| ln ε|
+

%`

πr2

)
I ε = ε−2 v`

πr2

∫
Ω̇ε

|∇pε|2 dx − Rε1 − Rε2

where

Rε1 =
iω`

επr2

∫
Ωε

µhε · curl aε dx ,

Rε2 =
iωµ0

| ln ε|

∫
Ω̇′
ε

hε · (∇q̃ε −∇qε) dx .

We aim at proving that
lim
ε→0

Rε1 = lim
ε→0

Rε2 = 0.
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A sketch of the proof (Cont’d)

We prove the bounds:

|Rε1 | ≤ Cε| ln ε|−1,

|Rε2 | ≤ Cε| ln ε|−
1
2 .

Then ( 1

| ln ε|
iωLε + Rε

)
I ε = v +O(| ln ε|−

1
2 )
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Coupled Conductor/Inductor model

We now consider the case of 2 domains Ω and Λε such that d(Ω,Λε) ≥ δ > 0:

Ω

Λε

1

We define the domains:
Vε = R3 \ (Ω ∪ Λε), V̇ε = Vε \ Σε,

and the space
Hε = {k ∈ L2(R3); curl k ∈ L2(R3), curl k = 0 in Vε}.
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Coupled Conductor/Inductor model

We consider the variational formulation:



hε ∈Hε,

iω

∫
R3
µhε · k dx +

∫
Ω
% curl hε · curl k dx

+ ε2
∫

Λε

% curl hε · curl k dx = v〈 curl k · n, 1 〉Sε ∀ k ∈Hε.

Using the expansion of functions k ∈Hε:

k = ∇ψ + β∇qε in Vε.

we obtain the equivalent variational formulation:
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Coupled Conductor/Inductor model



(hε, ϕε, I ε) ∈ X ε,

iω

∫
Ω∪Λε

µhε · k dx + iω

∫
Vε
∇ϕε · ∇ψ dx + iωLεI εβ +

∫
Ω
% curl hε · curl k dx

+ ε2
∫

Λε

% curl hε · curl k dx = v〈 curl k · n, 1 〉Sε ∀ (k, β, ψ) ∈ X ε,

where

X ε =
{

(k, ψ, β) ∈ L2(Ω ∪ Λε)×W 1(Vε)× C;

k × n = ∇ψ × n + β∇qε × n on ∂Ω ∪ ∂Λε
}

Using the same technique as for the unique conductor case, we have the estimates:

‖hε‖L2(R3) + ε ‖ curl hε‖L2(Λε) + ‖ curl hε‖L2(Ω) + |I ε| ≤ C .
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Coupled Conductor/Inductor model

Define the space

Yε =
{

(k, ψ, β) ∈ L2(R3)×W 1(Ω′)× C;

k × n = ∇ψ × n +
1

| ln ε|
β∇qε × n on ∂Ω

}
we obtain the approximate problem:



(hε, ϕε, I ε) ∈ Yε,

iω

∫
Ω
µhε · k dx + iω

∫
Ω′
∇ϕε · ∇ψ dx +

∫
Ω
% curl hε · curl k dx

+
( iω

| ln ε|
Lε + Rε

)
I εβ = vβ ∀ (k, ψ, β) ∈ Yε
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