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Introduction

o In modelling of electromagnetic processes, one can distinguish two main classes of models:

° : Phenomena are described by partial differential equations in the whole space.

These models are heavy to solve. They concern significant size conductors in which one is

interested in field distribution (magnetic field, electric current, ...)
° : Processes are described by ordinary differential, integral or algebraic
equations. Models are simpler to solve. They concern structures with complex connexions.
°

To derive, (and mathematically justify), using asymptotic approximation,

coupled models which use field equations in thick conductors and circuit equations in thin
ones.

o Before treating Maxwell equations, we start here by considering Eddy current equations.

e Eddy current processes consist in generating electric current and magnetic field in conductors
for the purpose of heating, stirring, metal shaping, welding,
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Introduction

Electromagnetic eddy current setups are composed of conductors (workpieces) and inductors.

o Inductors are conductors that are connected to a power generator. The connection is
idealized by a

@ Inductors may be thin wires or coils, whose thickness is smaller than other conductors.

@ These setups are generally modelled by Maxwell’s equations in which the wave propagation
term is neglected (assuming low frequency). These equations are valid in the conductors and
in the free space (vacuum or dielectric) domains.

@ When the inductor is “thin”, an intuitive modelling consists in using a model where

conductors are handled by a PDE, and coils ( ) are handled by a (ODE or algebraic)
circuit equation and interface conditions that couple all equations.
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o Electromagnetic eddy current setups are composed of conductors (workpieces) and inductors.

o Inductors are conductors that are connected to a power generator. The connection is
idealized by a cut.

o Inductors may be thin wires or coils, whose thickness is smaller than other conductors.

@ These setups are generally modelled by Maxwell’s equations in which the wave propagation

term is neglected (assuming low frequency). These equations are valid in the conductors and
in the free space (vacuum or dielectric) domains.

@ When the inductor is “thin”, an intuitive modelling consists in using a model where thick
conductors are handled by a PDE, and coils (inductors) are handled by a (ODE or algebraic)
circuit equation and interface conditions that couple all equations.
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Maxwell vs Eddy Current equations

In time harmonic regime (U(x, t) = R(e'“tu(x))), we have the set of equations:

iwee —curlh+j =0,
iwph 4+ curle = 0,

oj=e in the conductors

j=0 in the vacuum

where:
h: Magnetic field, e: Electric field, j: Electric current

and
: Angular frequency,

: Electric permittivity,
: Magnetic permeability,

” =E 0O g

: Electric resistivity.
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An example

ETAMM Conference, 2018 R. Touzani



The eddy current model -

Let us consider a simple configuration with one inductor.
The various involved domains are:

o Q = Q. is the inductor (a toroidal domain with thickness ¢ < 1), with boundary I'c
e S =S, is a cut in the inductor (s.t. Q. = Q. \ Sc is simply connected)
o QL :R3\ Q. is the free space

o Y. is a cut in the free space (s.t. Q. := Q. \ ¥. is simply connected)
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The eddy current model -

The various involved domains are:

o Q = Q. is the inductor (a toroidal domain with thickness ¢ < 1), with boundary I'c
e S =5, is a cut in the inductor (s.t. Q. :=Q. \ 'S¢ is simply connected)
o QL :R3\ Q. is the vacuum (free space)

e Y. is a cut in the vacuum (s.t. Q. := QL \ . is simply connected)
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The cuts 7?7

A well known result in vector analysis can be stated as follows:

Let k € L?(R3) such that
curlk =0 in Q..

Then, there exists p € Hl(QE) and B € C such that
k=Vo+pBVp® in Q,

where p® is the unique solution of the problem:

Ap® =0 in QE,
8 £
op =0 on [,
on
ope
fls. =1, —_— =0
[P°]s. [8n ]55
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Se 9Se
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The cuts 77

A well known result in vector analysis can be stated as follows:

Let k € L?(R3) such that
curlk =0 in Q..

Then, there exists ¢ € Hl(QE) and B € C such that
k=Vo+pBVp® in Q,

where p® is the unique solution of the problem:

Ap® =0 in Q.

a £

—BP =0 on [,
n

bl =1 [, =0

We deduce formally that we have

B = curlk - nds = k- tdl.
Se 9Se

We have a similar result in the free space QL.
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The equations

Main issue:

We consider eddy current equations with given voltage:

iwph® + curl e® = vé.
o curl hi® = e°

in Qg,
curl h® =0

in Q¢,

(6, w) :=

in QL
where §. is the distribution (supported by the cut S.) given by

/ curlw - nds Y w € C§°(R%)3
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The equations

Main issue:

We consider eddy current equations with given voltage:

iwph® + curl e® = vé.
o curl hi® = e°

in Qg,
curl h® =0

in Q¢,

(6, w) :=

in QL
where §. is the distribution (supported by the cut S.) given by

/ curlw - nds Y w € C§°(R%)3
Problem: What is the limit when ¢ — 0 ?
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Consider the space

'
He = {k € L2(R?); curlk € L*(R®), curlk =0in Q.}

The time-harmonic variational problem reads:

where
Note that

is the duality pairing between

and
is the current density,

is the electric field in the conductor
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A variational formulation

Consider the space

He = {k € L2(R?); curlk € L*(R®), curlk =0in Q.}

The time-harmonic variational problem reads:
h® € H.,

iw/ uhs-idx+/ gscurlhs-curlfdx:v(curlk-n,l)ss V ke He,
R3

e

where (-, -)s_ is the duality pairing between H%(SE)’ and H%(Ss).

e
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A variational formulation

Consider the space

H. = {k € ’(R®);curlk € L2(R®), curlk =0 in Q.}

The time-harmonic variational problem reads:
h® € H.,

iw/ uhE-Fdx+/ gscurlhe-curlfdx:v(curlk-n,l)_gE V ke He,
R3

e

where (-, -)s_ is the duality pairing between H%(Se)’ and H%(Ss).

Note that j© = curl h® is the current density, e = p°j° is the electric field in the conductor.
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A technical lemma

We assume in the following that:
0<po<p<pm

a.e in R3,
M= po

SO
in Q¢,

o =2

o = Const. > 0.
We have

(Amrouche et al., Math. Meth. Appl. Sci, 1998)

(curlk - n,1)s. = / Vp© - curl k dx,
JQ.
where p® is the potential defined previously.

Consequently, the total current running in the inductor is given by

=

(curlh® - n,1)s_ = / Vp*'-curlﬁ: dx.
Ja.

«O)» «F» « > < > Q>
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A technical lemma

We assume in the following that:

O<po<p<puym ae in R3,

1= pio in QL,
o = 529 o = Const. > 0.
Lemma
(Amrouche et al., Math. Meth. Appl. Sci, 1998)
We have
(curlk -n,1)s = A Vp® - curl k dx,

where p® is the potential defined previously.
Consequently, the total current running in the inductor is given by

I1°:= (curlh® - n,1)s_ :/- Vp° - curl b dx.
Qe
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Interpretation of v

Setting k = h® in the variational formulation, we get
iw/]R3 w|he|? dx—i—/Q o°| curl K> dx = v(curlh® - n,1)s._.
Let us define the electric current j = curl h* and the electric field e® = p°j°. We deduce:
iw-/R3,LLhE-FEdX+ Jj° e dx =v({j*-nl)s. = vI.

Q. )
Magnetic Energy + Electric Energy = Voltage x Current

ETAMM Conference, 2018 R. Touzani



How does ). depend on ¢ ?

We consider a closed Jordan curve 7 of class C3, parameterized by a function g : (0,1) — R3
such that

g(0) =g(1), g'(0) =g'(1), lg'(s)| > a>0.
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How does €2. depend on ¢ 7

We consider a closed Jordan curve 7 of class C3, parameterized by a function g : (0,1) — R3
such that

g(0) =g(1), g'(0) =g'(1), lg’(s)| = a > 0.

We define the mapping
F-(s,&,0) = g(s) + er&(cos Qv (s) + sinOb(s))

for (s,&,0) € [0,1) x (0,1) x [0,27), where v is the principal normal and b is the bi-normal of
the curve .
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The Jacobian of F. is given by
Je(s,€,0) = 2r%¢(|g’ (s)| — erér(s))  : Curvature
It is easy to see that if we have the property
rlk(s)| < « se0,1),

then F. is a Cl—diffeomorphism of Q onto Q. that defines Q. := F.(Q).
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A priori estimates

We have the asymptotic behaviour

2
/ VP2 dx = ™ e2 4 0(e3).
Qe

There is a constant

, independent of

such that:

where we recall that
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A priori estimates

Lemma

We have the asymptotic behaviour

2
/ [Vpe > dx = ey o(£%).
Qe
Theorem

There is a constant C > 0, independent of ¢ such that:

1A% | 2qes) < €.

| curt h¥ || 2(q, ) < ce 1,
el < .

where we recall that

I := (curlh® - n,1)s_ =

e

Vp® - curl hdx.
Q.
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The main result

Theorem (Arch. Rat. Mech. Anal., 2017, and submitted paper)

We have the asymptotic approximation:

(||1:€‘L€+R>IE = v+ O(Ine|~?)

where R is the conductor resistance and L€ is its inductance, i.e.

ol o
ne2r2  gr2’

L® :uo/ IVq© | dx,
QL

0 is the length of vy and q° is a solution of the problem:

AgE =0 in QL

a £

8—‘1:0 onl.,
aq°

I, =1, [2-]_ =0

[9°]s. [6H]ZE
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The main result

Theorem (Arch. Rat. Mech. Anal., 2017, and submitted paper)

We have the asymptotic approximation:

(Rt + R)IE = v+ O(Ine|~3)

[Ine]
where R is the conductor resistance and L€ is its inductance, i.e.

=0 1
R=L5-2% L=m| Vel

we2r2  wr?’

0 is the length of vy and q° is a solution of the problem:

Agt =0 in QL
oq°
— =0 s
on onte
aq°
=2 =1, |[— =0
[a°]x. { o ]zg
In addition, the limit current | := lim._,o I satisfies the Kirchhoff's circuit equation:
iwpol ol )
I =v.
( 27 - mr2 v
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A remark

Remark

The problem:

Ag° =0 in QL,
a €
a—i =0 on I,
9q°
—

E]ze =0
a°(x) = O(|x| ™)

has a unique solution.

|x] = oo
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A remark

Remark
The problem: )
Ag° =0 in QL,
8 €
8(11 =0 on .,
9q°
= = _— =
[q ]Zs = 17 [an ]ze 07
g°(x) = O(Ix| ™) x| = oo

has a unique solution.
We have proven in a previous work (M3AS, 2002), the asymptotic behaviour:

¢
Ls = p,o/ IVae 2 dx = 2 Ine| + O(1).
QL 2
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'
Key idea: Choice of a convenient test function.
Let us take in the variational formulation:
Since

in

, we have the expansion
Therefore
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A sketch of the proof

Key idea: Choice of a convenient test function.
Let us take k = k® in the variational formulation:

iw/ uh5~f6dx+52/ gcurlhe~curlfgdx:v(curlk5~n,1)55.
R3 Q

Since curl h* = 0 in ., we have the expansion
h® = V® +1°Vg® in QL.
Therefore
iw/ whe -k dx
+ iwpo he - k" dx
Q2

+ 52/ ocurl h° - curl k° dx
Qe

=v(curlk®-n,1)s_
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A sketch of the proof

Key idea: Choice of a convenient test function.
Let us take k = k® in the variational formulation:

iw/ uh5~f6dx+52/ gcurlhe~curlfgdx:v(curlk5~n,1)55.
R3 Q

Since curl h* = 0 in ., we have the expansion
h® = V® +1°Vg® in QL.
Therefore
iw/ whe -k dx

+ iw,uo/ Ve k" dx
2

+iw(uo /Q/ Vqg* Kk dx)lg

+ 82/ o curl h® -curl k© dx
Q

€

= v/ curlk® - Vp° dx

€
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A sketch of the proof (Cont'd)

iw /
QE

uhE-Fde—i-iwuo/ V@E-Fsdx—i-iw(uo/ Vq‘€~?€dx)lE
QL QL

+ 62/ ocurl i - curl k dx = v/ curlk° - Vp© dx.
Qe Qc
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A sketch of the proof (Cont'd)

iw/
Q

uhs‘;sdx—i-iwuo/ Vnps-isdx—i-iw(uo/ Vqs.;ez:lx)l5
QL QL

€

+ 82/ ocurl i - curl k dx = v/_ curlk® - Vp© dx.
Q Q

€ €

Hint.
o If we choose k® = aVq® in Q’E, we have, since Ag® =0 in Q’E:

Mo/ Vap€~;8dx=auo/ Ve® - Vg®dx =0
QL 2L

Mo/ Vg -k dx:ocuo/ Vg2 dx =: al®
QL QL
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A sketch of the proof (Cont'd)

iw/
Q

uhs-;sdx—i-iwuo/ V¢5~F8dx+iw<uo/ Vqs.;sclx)l5
QL QL

€

+ 62/ ocurl h® - curlk® dx = v/ curl k°
Q Q

€ €

Hint.
o If we choose k® = aVq® in Q’E, we have, since Ag® =0 in Q’E:
uo/ V<p€~;€dx:auo/ Ve® - Vg®dx =0
QL QL
uo/ Vg -k dx:oeuo/ Vg2 dx =: al®
o o
o If we take k© such that curl k* = Vp® in Q., we obtain:

gs/ curl h° - curl k* dx = gs/_ curl h* - Vp® dx = o°I°.
Qe Qc

ETAMM Conference, 2018 R. Touzani
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A sketch of the proof (Cont'd)

Let us then choose

2
e wrr___ . -
R —Vgq inQL,
k® =< |Ing| ¢
curl a® in Qg

where G is a regularization of g° (Note that Vg® € LY (L) for 1 < a < 2), and

loc

1
curlcurla® = =Vp*© in Q¢,
€
diva® =0 in Qg,
a“-n=0 on .,

curla® x n = kIEQ, xn onlg,
€

(a® - n,1)s. =0.
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A sketch of the proof (Cont'd)

Using this test function, we obtain

iw/ wh® - curl a° dx + °
Q.

iwpomr?
l

[Ing|

2

h® . Vg©dx +¢l° = Z/ |Vpe|? dx
e Jo.
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A sketch of the proof (Cont'd)

Using this test function, we obtain

e iwpgmr?

h® - Vg® dx + ¢l = Z/_ |Vp©|? dx

iw/ wh® - curl a° dx +
Q [Ing| ¢ Qr € Ja,

£

Using the expansion h® = V¢ + [V g° in QL, we obtain

i ¢ ¢
(= + L )r =22 | Vo2 dx— R — Rs
[Ine| = 7r wr? Jo,

where

iwl
Rf = 5 / wh® - curl a® dx,
ETTr Q.

R = —H2 [ he (VG — Vq)dx.
[Ine| Jar

We aim at proving that
lim Rf = lim R5 = 0.
e—0 e—0
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A sketch of the proof (Cont'd)

We prove the bounds:

IRf| < Celine| %,
|RS| < Ce|Ine|~2.
Then

G#Tmﬁ+Rﬂ/=v+ommrh
ne
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Coupled Conductor/Inductor model

We now consider the case of 2 domains Q and A: such that d(ﬁ7 KE) >6>0:
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Coupled Conductor/Inductor model

We now consider the case of 2 domains €2 and A. such that z:l(ﬁ7 KE) >6>0:

We define the domains:

and the space

Ve =R3\ (QUA.),

f)s = Vs \257
H. = {k € L>(R®); curlk € L2(R3), curlk =0 in V.}
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Coupled Conductor/Inductor model

We consider the variational formulation:

h® € H.,

iw/ ,u,h5~;dx+/gcurlh5~curlzdx
R3 Q

+€2/ ocurl h* - curl k dx = v{curl k - n,1)s
A

e

VkeH..
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Coupled Conductor/Inductor model

We consider the variational formulation:
h® € H.,
iw/ wh® ~Fdx+/ ocurl h® - curl k dx
R3 Q

+52/ ocurl h* - curlk dx = v(curlk - n,1)s. VkeH..
A

€

Using the expansion of functions k € H..:
k =V +BVYVg in V..

we obtain the equivalent variational formulation:
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Coupled Conductor/Inductor model

(h®, %, 1%) € X,

iw/ wh® -k dx + iw VapE-Vde—i-istlsB—i—/gcurlhe-curI;dx
QUA. Ve Q
+€2/ ocurl h® - curlk dx = v(curlk - n,1)s. v (k,B,v¢) € X,
Ae
where
X = {(k,,8) € 2(QUAL) x WH(V2) x C;

kxn=Vixn+BVq xnondQUOIN:}
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Coupled Conductor/Inductor model

(h®, %, 1%) € X,

iw/ wh® - kdx +iw
QUA.

Vo - Vihdx + iwLEIEB—i—/ ocurl h® - curl k dx
Ve Q
+€2/ ocurl h® - curlk dx = v(curlk - n,1)s. Y (k,B,¢) € X,
Ae
where
X = {(k,,8) € L2(QUA) x WH(V2) x C;

kxn=Vv¢ xn+BVq® xnondQUOIA.}

Using the same technique as for the unique conductor case, we have the estimates:

||h€||L2(R3) +e H curl hE“Lz(/\E) ar || curl hE“Lz(Q) ar |IE| < C.
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Coupled Conductor/Inductor model
Define the space

Ve ={(k v, € L2(®) x Wlm )xC

k><n—V¢><n+‘ |,6Vq xnonBQ}
we obtain the approximate problem
( y P 7’5) €Y.,

“—LE + R®

m.)/,uhS kdx—l—w.)/ V¢5~V$dx+/gcurlhe curl k dx
€ —
+( | )IFB=vB

V(k,¥,B) € Ve
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